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Abstract: The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both 
engineering and academic fields. Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical 
stabilization performance, so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic 
constraints. Thus, sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process. Due to the 
switching effects of the variable structure controller, once the tracking error reaches the designed hyper-plane, it will be restricted to this 
plane permanently even with the existence of external disturbances. Thus, precise attitude regulation can be achieved. Furthermore, 
taking the non-zero initial tracking errors and chattering phenomenon into consideration, saturation functions are used to replace sign 
functions to smooth the control torques. The relations between the upper bounds of tracking errors and the controller parameters are 
derived to reveal physical characteristic of the controller. Mathematical models of free-floating space manipulator are established and 
simulations are conducted in the end. The results show that the spacecraft’s attitude can be regulated to the position as desired by using 
the proposed algorithm, the steady state error is 0.000 2 rad.  In addition, the joint tracking trajectory is smooth, the joint tracking 
errors converges to zero quickly with a satisfactory continuous joint control input. The proposed research provides a feasible solution for 
spacecraft attitude regulation by using arm motion, and improves the precision of the spacecraft attitude regulation. 
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1  Introduction∗ 
 

For the purpose of both the survival of a satellite and the 
satisfactory achievement of on orbit operations, spacecraft 
attitude must be regularly controlled. Conventionally, 
momentum wheel and thrusters are two typical mechanisms 
to fulfill this task. However, for momentum wheel, the 
off-loading problem needs to be considered and the use of 
thrusters would consume the non-renewable fuels[1–2]. Thus 
other attitude control methods are required as a replacement 
to realize the attitude control tasks. 

For spacecraft equipped with additional appendages, for 
example manipulators, when the attitude control system of 
the spacecraft is closed, the angular momentum of the 
whole system conserves. The non-holonomy is the essential 
nature of the system[3–4]. So, the uncontrolled spacecraft 
would have a coupling movement caused by the motion of 
the manipulators. This makes it possible to regulate the 
spacecraft attitude by controlling the arm motions. Using 
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additional appendages to perform spacecraft attitude 
regulation tasks is first proposed by REYHANOGLU, et 
al[5]. In their research, a reorientation maneuvering strategy 
for an interconnection of planar rigid bodies in space is 
developed and applied to a specific space maneuver of a 
three body interconnection. In the past decades, 
considerable research has been done in this area.  

YAMADA[6] stablished the relation between the 
variation of the base attitude and that of the joint angles. On 
the basis of this relation, an algorithm for the joint angle 
path planning was proposed to regulate spacecraft attitude 
to the desired position. Further, taking the additional 
constraints such as joint limits of the manipulators, a 
surface integral approach for the motion planning of the 
manipulators was presented by MUKHERJEE, et al[7]. Still, 
the problem of reorienting the satellite was reformulated to 
a steering problem for a drift free control system and was 
solved from the perspective of control theories by WALSH, 
et al[8]. VAFA and DUBOWSKY[9] used cyclic motion of 
the space manipulator to change the satellite orientation. 
This scheme requires many cycles to make even a small 
change in vehicle orientation. On the basis of cyclic arm 
motion, feedback control of space robot attitude was 
developed by YAMADA, et al[10]. In their research the 
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model errors and disturbances have been taken into 
consideration. Optimal control theory is developed by 
CERVEN, et al[11], to minimize the required control efforts 
in determining the arm motion. XU, et al[12] developed an 
trajectory planning method for base reorientation of 
free-floating space robotic system after capturing target. 
SHI, et al[13] proposed a path planning approach to realize 
the Cartesian pose of the end effector and the attitude of 
spacecraft attaining the desired states simultaneously. 
Quantum behaved particle swarm optimization algorithm 
was used to solve a nonlinear optimization problem. 

Most of the above mentioned researches used to solve 
the reorientation problems just discussed the path planning 
problem. The relationship between the attitude change of 
the spacecraft and the manipulator motions was derived. 
Then it was used to determine the desired manipulator 
motions based on the desired spacecraft attitude. However, 
given the desired path of the manipulator, the precise 
tracking is not always possible. Disturbances caused by 
friction and/or actuator failures do always exist. Under this 
situation, the desired path generated by the path planning 
algorithm will not always be precisely followed. For 
free-floating multibody space structures, the non- 
holonomic property suggests that when the precise path 
following can’t be fulfilled, the predefined attitude 
regulation/tracking will fail. Thus, how to control the 
movement of robot arms to precisely following the 
predefined path from the start should be extensively studied. 
However, most of the researches only provide path 
planning algorithms; few of them have discussed this 
tracking problem. 

Sliding mode control is a control algorithm using 
switched control actions to prescribe the system dynamics 
to a predefined manifold. When the sliding manifold is 
reached, robustness to modeling uncertainties and external 
disturbances is achieved. Thus sliding mode control is 
widely used in control areas[14–16]. Sliding mode control has 
been addressed in some previous studies for spacecraft 
attitude control problems[17–20]. However, the control 
problem studied in those studies is different from which 
will be discussed. The general control problem of path 
following can be concluded to be successful if the tracking 
error converges to zero when time evolves to infinity. 
However, the control task studied in this paper requires that 
the tracking error stays on the zero line permanently from 
the beginning. Thus the existing sliding mode control laws 
should be reinvestigated carefully. 

In this paper, the precise path following control problem 
is studied. Sliding mode control techniques are utilized to 
confine the tracking errors stay on the zero line 
permanently. To avoid the chattering phenomenon, 
saturation function is used. The relation between attitude 
regulation accuracy and controller parameters is deduced. 
In the end, simulations are conducted with the comparison 
of computed torque control law to show the effectiveness of 
the proposed controller. The paper is organized as follows: 

Section 2 presents the model description. Section 3 
illustrates the researched problems with simulations; the 
control system design is presented in section 4. Simulation 
results of a two link free-floating space robot are presented 
in section 5. 

 
 

2  Modeling of Space Robotic System 
 
The dynamic model for a rigid n-link, serially connected, 

direct driven revolute space robot is given as follows[21]: 
 
 ) ( ,( )  q q C q qM q d   τ τ , (1) 

 
where , ,q q q   —Spacecraft and manipulator joint angles, 

velocity and acceleration vectors, 
( )M q —Robot inertial matrix, 

( , )C q q q  —Centripetal coriolis force, 

τ —Control inputs torque, 

dτ —Bounded external disturbance. 
The dynamic model Eq. (1) developed with Euler 

Lagrange equation possesses properties 1, 2[12]. 
Property 1: The positive definite and symmetric inertia 

matrix satisfies the following inequalities: 
 
 2 2

1 2( ) , nm m   M qT Rζ ζ ζ ζ ζ , (2) 

 
where 1 2, Rm m   are known positive bounding constants. 

Property 2: The time derivative of the inertia matrix and 
the centripetal Coriolis matrix satisfy the following skew 
symmetric relationship[22]: 

 
     2 , 0, n   M q C q qT R ζ ζ ζ . (3) 

 
Remark 1: The skew symmetric relationship illustrated 

in Property 2 indicates the passivity property of Eq. (1) 
with respect to input τ  and output q . This means the 
negative feedback connection of joint velocities q  would 
stabilize the space manipulator system to its equilibrium 
manifold. 

 
 

3  Problem Formulation 
 
Simulations are conducted to illustrate the problems to 

be solved and the form problem definition is given 
subsequently. Here, a reorientation problem for the 
spacecraft of a two link planar space robot needs to be 
solved. The initial spacecraft attitude is 0 rad, and it is 
required to be regulated to 0.908 rad. On the basis of the 
path planning algorithms, one possible trajectory for 
manipulator joints is chosen as  
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3 2

1
3 2

2

( ) ( 15 ) 500,

( ) (2 30 ) 500.

q t t t

q t t t

  

  
 (4) 

 
When precise tracking is achieved, the spacecraft attitude 

will become 0.908 rad at 10 s and its velocity will be zero. 
The physical parameters of this simulated space robot are 

listed in Table 1, where im  and iI  are the mass and the 
moment of inertia of the i-th rigid body, respectively, ia  
and ib  are shown in Fig. 1 

 
Table 1.  Physical Parameters of the Space Robot 

Body 
Link length Body mass 

mikg 
Body inertia 
Ii(kg·m2) aim bim 

Base — 0.5 4 0.4 

Link 1 0.5 0.5 1 0.1 

Link 2 0.5 0.5 1 0.1 

 

 
Fig. 1  Configuration of the simulation model 

 
In the simulation, the system states are initialized to be 

zero. Then the simulation is conducted with the computed 
torque control law[23] ,which gives the form of 

 
 m md d p m m( )( ) ,k k  q e e V qB q q     τ ,  
 

where d p3, 2k k   and , , , ,B V e s f     are defined in 
section 4. 

With the assumption of exact knowledge of system 
dynamics and no external disturbance, the simulation 
results are shown in Fig. 2. 

 

 

 
Fig. 2  Simulated results with no disturbances 

 
From the simulation results, it can be observed that the 

spacecraft attitude will become 0.908 rad after 10 s. When 
there exists external disturbance, for example the following 
impulse disturbance at 1 s, 

 

 
10,

( )
0, others

1 2

.

,t
td










 (5) 

 
The computed torque control would appear a period of 

deviation, see Fig. 3. 
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Fig. 3  Simulated results with external disturbance 

 
It can be observed that in spite of the disturbance, the 

manipulator joint tracking error quickly converges to zero 
which means the closed loop system is still stable. However, 
at the end of simulation, the spacecraft attitude becomes to 
be 0.945 1 rad. This is caused by the non-holonomic 
structure of the free-floating space robots. The attitude 
change of the spacecraft is not just decided by the initial 
and ending position of the manipulator joints. Actually, it is 
a function of the entire trajectory of manipulator joints. 
Thus, if the precise following is not achieved, the actual 
spacecraft attitude would deviate from the desired one at 
the end of the task. 

From this perspective of view, the control object required 
in this task is to command the motion of manipulator joints 
to precisely tracking the given planned path to make the 
tracking error equals to zero permanently, i.e. 0e . 

 
 

4  Feedback Sliding Mode Attitude  
Regulation Control 
 

Sliding mode control techniques use the sign function to 
realize the switched control effects. The introduction of 
switched control effects would enforce the system 
trajectory to stay on the sliding manifold even in the 
presence of disturbances. In the following, sliding mode 
control law is designed to realize the control objects. 

 
4.1  Sliding mode control with sign functions 

The manipulator dynamics in Eq. (1) can be partitioned 
as 

 
 11 b 12 m 1 dsτ  q qm m h  , (6) 

 
 21 b 22 m 2 m dmτ   q m q hm   τ , (7) 

 
where b m,q q  represent the generalized coordinates for 
spacecraft and manipulator respectively and 1 11 bh c q   

12 m 2 21 b 22 m, .c q h c q c q    If bq  is solved from Eq. (6), Eq. 
(8) can be obtained: 

 1 1
b 11 1d 1 12 m 1s ( )   τq m m m q h  . (8) 

 
If Eq. (8) is substituted into Eq. (7), the following can be 

obtained: 
 

m m m

1 1
22 21 11 12 m 2 21 11 1

( ) ( ),

( )− −− + − =
B q V q q q

m m m m q h m m h
 

 



  

1
m dm 21 11 ds( ) ,τ τ τ−− −+

d

m m


           (9) 

 
where )( mB q  can be regarded as the transformed inertia 
matrix for joint variables. 

mq  and d  is the lumped disturbance term which is 
upper bounded by α , i.e. αd   with norm defined 
as 1max i n ix≤ ≤=x  for n-dimensional vectors x . 

From the symmetric and positive definite property of 
inertia matrix M(q), matrix m( )B q  is also positive 
definite and symmetric. 

In virtual of controller design, matrix V  is decomposed 
to ˆV V V  such that 2B V   is skew symmetric, i.e. 

 
 T

m m( ( ) 2 ( 0)), n  B q V q q   Rζ ζ ζ . (10) 

 
The following error variables and sliding vectors are 

defined in virtual of the synthesis of the controller:  
 

m md ,    ee q q s e λ ,            (11) 

 
where λ diag[ ]iλ > 0 . With some manipulations, Eq. (1) 
can be transformed to 

 

m m m m d d d( , ) ( , )( ) , , , ,  q s V q q s fB q q q q q d    τ   (12) 

  m d d d mr mr
ˆ, , , , ,f q q q q q Bq Vq Vs        

 mr d . q q e  λ  

 
To this end, the control law is designed as 
 
 m m d d d( , ) sgn, ( ), , kτ f q q q q q s       . (13) 

 
Theorem 1: Given the space manipulator dynamics 

described by Eq. (1) in the presence of disturbances under 
the control law Eq. (13) , the following results holds for the 
closed-loop system: 

(i) ,e e  will always equal to zero; 
(ii) Control torques mτ  is bounded for all 0.t   
Proof(i): The closed-loop dynamics for space 

manipulators under the designed control law Eq. (13) is 
 
 sgn( )k  Bs Vs s d . (14) 

 
Given the following Lyapunov function candidate  

二级标题字号 10 磅 
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 T
1

1
2

L  s Bs , (15) 

 
the derivative of Eq. (15) along the trajectory of Eq. (14) 
gives 

 
T

1 ( sgn( ))kL ss s D     

 ( ).kk α αs s s     (16) 
 

Because the inequality 2T
max ( )λs Bs s B  holds, 

from Eq. (15), s  is lower bounded by 
 

 
 
1

max

2L
λ

s
B

. (17) 

 
Thus, combining Eq. (16) one get 
 

 ( ) ( )
1

1
max

2LL k α
λ

≤ − −
B

 . (18) 

 
Integrating both sides from 0 to tr of the upper inequality, 

one get 
 

      
 1 r 1 r

max

22 2 0L t L k tα
λ

  
B

. (19) 

 
When the sliding surface is reached, ( )rts 0, therefore, 
 1 r 0L t  . From Eq. (19), the reaching time is upper 

bounded by 
 

 
   
 

1 max
r

2 0L
t

k
λ
α




B
. (20) 

 
Because dq  is planned with the constraints 

d (0) (0),q q d (0) (0),q q  thus (0) 0, (0) 0, e e   which 
means (0) 0.s   Further we can conclude that 1(0) 0L  , 
so Eq. (20) turns to be 

 
 r 0t  . (21) 
 
Then, we know that r 0t  , so the sliding surface is 

reached at the beginning. Solving the ordinary differential 
equation 0e e λ  with zero initial values, e  and e   
always equal zero even with the existences of bounded 
disturbances. 

Proof(ii): From the boundness of reference path dq , the 
boundness of q  and sliding vector s  can be established, 
and furthermore we can conclude that the torques generated 
by control law Eq. (13) is also bounded. 

Remark 2: The construction of skew symmetric 
relations in Eq. (10) is to render the transformed system Eq. 
(12) to be passive with respect to input τ  and output s . 

Thus the designed negative feedback connection of s (in 
the form of sign( )s  in Eq. (13)) would stabilize the 
sliding vector s  to zero. Because s  is a stable manifold, 
once the system trajectory reaches s , the tracking error 
dynamics would naturally evolve to the stable equilibrium. 
Thus, the trajectory tracking purpose would be achieved. 
This is the physical interpretation of the designed sliding 
mode control law. 

 
4.2  Sliding mode control with saturation functions 

For the designed control law Eq. (13), the introduction of 
sign function would inevitablely result in the chattering 
phenomenon. In this part, the saturation strategy is used to 
eliminate the chattering phenomenon. The new controller is 
modified to 

 

m d d d 1

m
m d d d 2

( , ) sgn( ), ,

(

, , ,

, ), , , ,,

k

k
δ

f q q q q q s s
τ sf q q q q q s

  

  

  









    (22) 

 
where   is a small value. 1 2, ,k k δ  are positive control 
gains, which satisfy 2kδα  . 

Theorem 2: Consider the space manipulator dynamics 
described by Eq. (1) in the presence disturbances under the 
control law Eq. (22), the following result holds for the 
closed-loop system.  

(a) The tracking error is upper bounded by 2a kδ λ ,  
i.e. ( ) 2e t kδα λ  . 

(b) The control torque mτ  is bounded for all 0t  . 
Proof (a): The new Lyapunov function is defined to be  
 

 T
2

1
2

L .s Bs  (23) 

 
Then the derivatives of the defined Lyapunov function 

along the system dynamics gives to be 
 
 T

2 m m d d d( ,( , , , ))L τ α f q q qs sq q    . (24) 

 
When (0) 0s  , according to Eq. (22), the control torque 

applied should be 0mτ  – 2, ,( , ),m d d d k
δ

− −
sf q q q q q   . 

During a small time period after 0, Eq. (25) can be 
obtained: 

 

 
2

2
2 2 .

kL k α α
δ δ

       
s s s s  (25) 

 
Because (0) 0s  , the predefined Lyapunov function 

will increase until 
 
 2 0L  , (26) 
 

which requires 
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2k

δαs  . (27) 

 
Because 2kδα λ  is less than  , when s  goes 

beyond this constraint, 2L  will turn to be negative. The 
control input will confine the sliding vector s  goes back 
and stays into the boundary layer 2kδα . Thus, eventually, 
the sliding vector will be upper bounded by 

 

 
2k

δαs  . (28) 

 
From the definition e e s  λ , the solution for the 

ordinary differential equation is 
 

 
1

0
( ) exp( ) (0) exp( ) exp( ) d .t t t t tλ λ λ    e e s  (29) 

 
Then 

 

0
( ) exp( ) (0) exp( ) exp( ) d

t
t t t t te e s    λ λ λ  

 
1 exp( )exp( ) (0) .tt e s  

 
λλ

λ
  (30) 

 
Because (0) 0e  , the tracking error is upper bounded 

by 
 

 
2

( )e t
k
δα

λ λ
s

  . (31) 

 
Proof (b): From the boundness of reference path dq , the 

boundness of q  and sliding vector s  can be established, 
and the further we can conclude that the control torque 
generated by Eq. (22) is also bounded. 

Remark 3: In Theorem 2, uniformly ultimately 
boundness property of the tracking error can be established. 
The tracking error can be made arbitrary small by tuning 
the control parameters. Thus the required attitude 
reorientation accuracy can always be achieve by properly 
choosing values for 1 2,, ,k kλ δ . 

 
5  Simulation 

 

To demonstrate the effectiveness of the proposed control 
schemes, numerical simulations are performed and 
presented in this section. The form of disturbances is the 
same to the one used in section 3, and the control object is 
also the same to the simulations conducted in Section 3, i.e. 
to regulate the spacecraft attitude from 0 rad to 0.908 rad. 
The reference path for manipulator joints is also the same 
one, that is 

 

 
 

 

3 2
1

3 2
2

( ) 15 500,

( ) 2 30 500.

q t t t

q t t t

  

  
 (32) 

Both conventional sliding mode control with sign 
function and improved saturation sliding mode control are 
simulated. The simulation results are shown in the 
following figures. Figs. 4–5 show the simulated results 
using sliding mode control with sign functions in which the 
control parameter is set to be 2, 25 kλ   . The tracking 
errors and trajectories are shown in Fig. 4, the dynamics of 
the sliding surface and torques response are given in Fig. 5. 

 

 
Fig. 4  Sliding mode control with disturbance 
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Fig. 5  Sliding mode control with disturbance 

 
The simulation results show that the actual manipulator 

joint precisely tracks the given ones. In spite of the 
disturbance torque, an acceptable desirable orientation 
response is achieved, and the spacecraft reaches the 
demanded angle with a settling time 10 s. Moreover, the 
amplitude of control torque is not more than the 25 N • m. 
But, it can be observed from Fig.5 (a) that the introduction 
of the sign function generates the chattering phenomenon. 

Fig. 6 and Fig. 7 show simulation results with sliding 
mode control with saturation functions. In order to guarantee 
system convergence and achieve robustness, the control 

 

 
Fig. 6  Saturation sliding mode control with disturbance 

parameters are set to be 2,λ   0.5,∈  1 25,k   
2 5k   and 0.01δ  . The tracking errors and trajectories 

are shown in Fig. 6; the dynamics of the sliding surface and 
torques response are given in Fig. 7. 

 

 
Fig. 7  Saturation sliding mode control with disturbance 

 
From Fig. 7 it can be observed that the chattering 

phenomenon is eliminated. However, this is achieved at the 
price of a bounded sliding vector. Further, the tracking error 
can only be bounded by 0.01 from Fig. 6(a). But this does 
not affect the spacecraft reorientation accuracy. At the end 
of the simulation, the spacecraft attitude is regulated to 
0.907 8 rad shown in Fig. 6(b). 

Extensive simulations are also done with different 
disturbance inputs. The results show that the proposed 
approach is feasible to regulate spacecraft attitude in spite 
of disturbance existence. Moreover, the flexibility in the 
choice of control parameters can be utilized to obtain the 
desirable performance. 

 
6  Conclusions 

 
(1) An approach based on variable structure control is 

presented, and the relation between the upper bounds of the 
tracking errors and the controller parameter is derived. This 
approach can realize precise attitude regulation of the 
spacecraft by using arm motion. 
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(2) The non-zero initial tracking errors and chattering 
phenomenon can be solved through replacing the sign 
functions by saturation functions.  

(3) The proposed control system is proved stable based 
on Lyapunov theory. The simulation results indicate that 
the proposed control approach is effective, and its 
performance is better than that of computed torque control 
law. 
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